|
| 1 | +# Copyright (c) MONAI Consortium |
| 2 | +# Licensed under the Apache License, Version 2.0 (the "License"); |
| 3 | +# you may not use this file except in compliance with the License. |
| 4 | +# You may obtain a copy of the License at |
| 5 | +# http://www.apache.org/licenses/LICENSE-2.0 |
| 6 | +# Unless required by applicable law or agreed to in writing, software |
| 7 | +# distributed under the License is distributed on an "AS IS" BASIS, |
| 8 | +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 9 | +# See the License for the specific language governing permissions and |
| 10 | +# limitations under the License. |
| 11 | + |
| 12 | +import random |
| 13 | +import string |
| 14 | +import unittest |
| 15 | +from copy import deepcopy |
| 16 | +from typing import Optional, Union |
| 17 | + |
| 18 | +import torch |
| 19 | +from parameterized import parameterized |
| 20 | + |
| 21 | +from monai.data.meta_tensor import MetaTensor |
| 22 | +from monai.transforms import FromMetaTensord, ToMetaTensord |
| 23 | +from monai.utils.enums import PostFix |
| 24 | +from monai.utils.module import get_torch_version_tuple |
| 25 | +from tests.utils import TEST_DEVICES, assert_allclose |
| 26 | + |
| 27 | +PT_VER_MAJ, PT_VER_MIN = get_torch_version_tuple() |
| 28 | + |
| 29 | +DTYPES = [[torch.float32], [torch.float64], [torch.float16], [torch.int64], [torch.int32]] |
| 30 | +TESTS = [] |
| 31 | +for _device in TEST_DEVICES: |
| 32 | + for _dtype in DTYPES: |
| 33 | + TESTS.append((*_device, *_dtype)) |
| 34 | + |
| 35 | + |
| 36 | +def rand_string(min_len=5, max_len=10): |
| 37 | + str_size = random.randint(min_len, max_len) |
| 38 | + chars = string.ascii_letters + string.punctuation |
| 39 | + return "".join(random.choice(chars) for _ in range(str_size)) |
| 40 | + |
| 41 | + |
| 42 | +class TestToFromMetaTensord(unittest.TestCase): |
| 43 | + @staticmethod |
| 44 | + def get_im(shape=None, dtype=None, device=None): |
| 45 | + if shape is None: |
| 46 | + shape = shape = (1, 10, 8) |
| 47 | + affine = torch.randint(0, 10, (4, 4)) |
| 48 | + meta = {"fname": rand_string()} |
| 49 | + t = torch.rand(shape) |
| 50 | + if dtype is not None: |
| 51 | + t = t.to(dtype) |
| 52 | + if device is not None: |
| 53 | + t = t.to(device) |
| 54 | + m = MetaTensor(t.clone(), affine, meta) |
| 55 | + return m |
| 56 | + |
| 57 | + def check_ids(self, a, b, should_match): |
| 58 | + comp = self.assertEqual if should_match else self.assertNotEqual |
| 59 | + comp(id(a), id(b)) |
| 60 | + |
| 61 | + def check( |
| 62 | + self, |
| 63 | + out: torch.Tensor, |
| 64 | + orig: torch.Tensor, |
| 65 | + *, |
| 66 | + shape: bool = True, |
| 67 | + vals: bool = True, |
| 68 | + ids: bool = True, |
| 69 | + device: Optional[Union[str, torch.device]] = None, |
| 70 | + meta: bool = True, |
| 71 | + check_ids: bool = True, |
| 72 | + **kwargs, |
| 73 | + ): |
| 74 | + if device is None: |
| 75 | + device = orig.device |
| 76 | + |
| 77 | + # check the image |
| 78 | + self.assertIsInstance(out, type(orig)) |
| 79 | + if shape: |
| 80 | + assert_allclose(torch.as_tensor(out.shape), torch.as_tensor(orig.shape)) |
| 81 | + if vals: |
| 82 | + assert_allclose(out, orig, **kwargs) |
| 83 | + if check_ids: |
| 84 | + self.check_ids(out, orig, ids) |
| 85 | + self.assertTrue(str(device) in str(out.device)) |
| 86 | + |
| 87 | + # check meta and affine are equal and affine is on correct device |
| 88 | + if isinstance(orig, MetaTensor) and isinstance(out, MetaTensor) and meta: |
| 89 | + orig_meta_no_affine = deepcopy(orig.meta) |
| 90 | + del orig_meta_no_affine["affine"] |
| 91 | + out_meta_no_affine = deepcopy(out.meta) |
| 92 | + del out_meta_no_affine["affine"] |
| 93 | + self.assertEqual(orig_meta_no_affine, out_meta_no_affine) |
| 94 | + assert_allclose(out.affine, orig.affine) |
| 95 | + self.assertTrue(str(device) in str(out.affine.device)) |
| 96 | + if check_ids: |
| 97 | + self.check_ids(out.affine, orig.affine, ids) |
| 98 | + self.check_ids(out.meta, orig.meta, ids) |
| 99 | + |
| 100 | + @parameterized.expand(TESTS) |
| 101 | + def test_from_to_meta_tensord(self, device, dtype): |
| 102 | + m1 = self.get_im(device=device, dtype=dtype) |
| 103 | + m2 = self.get_im(device=device, dtype=dtype) |
| 104 | + m3 = self.get_im(device=device, dtype=dtype) |
| 105 | + d_metas = {"m1": m1, "m2": m2, "m3": m3} |
| 106 | + m1_meta = {k: v for k, v in m1.meta.items() if k != "affine"} |
| 107 | + m1_aff = m1.affine |
| 108 | + |
| 109 | + # FROM -> forward |
| 110 | + t_from_meta = FromMetaTensord(["m1", "m2"]) |
| 111 | + d_dict = t_from_meta(d_metas) |
| 112 | + |
| 113 | + self.assertEqual( |
| 114 | + sorted(d_dict.keys()), |
| 115 | + [ |
| 116 | + "m1", |
| 117 | + PostFix.meta("m1"), |
| 118 | + PostFix.transforms("m1"), |
| 119 | + "m2", |
| 120 | + PostFix.meta("m2"), |
| 121 | + PostFix.transforms("m2"), |
| 122 | + "m3", |
| 123 | + ], |
| 124 | + ) |
| 125 | + self.check(d_dict["m3"], m3, ids=True) # unchanged |
| 126 | + self.check(d_dict["m1"], m1.as_tensor(), ids=False) |
| 127 | + meta_out = {k: v for k, v in d_dict["m1_meta_dict"].items() if k != "affine"} |
| 128 | + aff_out = d_dict["m1_meta_dict"]["affine"] |
| 129 | + self.check(aff_out, m1_aff, ids=True) |
| 130 | + self.assertEqual(meta_out, m1_meta) |
| 131 | + |
| 132 | + # FROM -> inverse |
| 133 | + d_meta_dict_meta = t_from_meta.inverse(d_dict) |
| 134 | + self.assertEqual( |
| 135 | + sorted(d_meta_dict_meta.keys()), ["m1", PostFix.transforms("m1"), "m2", PostFix.transforms("m2"), "m3"] |
| 136 | + ) |
| 137 | + self.check(d_meta_dict_meta["m3"], m3, ids=False) # unchanged (except deep copy in inverse) |
| 138 | + self.check(d_meta_dict_meta["m1"], m1, ids=False) |
| 139 | + meta_out = {k: v for k, v in d_meta_dict_meta["m1"].meta.items() if k != "affine"} |
| 140 | + aff_out = d_meta_dict_meta["m1"].affine |
| 141 | + self.check(aff_out, m1_aff, ids=False) |
| 142 | + self.assertEqual(meta_out, m1_meta) |
| 143 | + |
| 144 | + # TO -> Forward |
| 145 | + t_to_meta = ToMetaTensord(["m1", "m2"]) |
| 146 | + del d_dict["m1_transforms"] |
| 147 | + del d_dict["m2_transforms"] |
| 148 | + d_dict_meta = t_to_meta(d_dict) |
| 149 | + self.assertEqual( |
| 150 | + sorted(d_dict_meta.keys()), ["m1", PostFix.transforms("m1"), "m2", PostFix.transforms("m2"), "m3"] |
| 151 | + ) |
| 152 | + self.check(d_dict_meta["m3"], m3, ids=True) # unchanged (except deep copy in inverse) |
| 153 | + self.check(d_dict_meta["m1"], m1, ids=False) |
| 154 | + meta_out = {k: v for k, v in d_dict_meta["m1"].meta.items() if k != "affine"} |
| 155 | + aff_out = d_dict_meta["m1"].meta["affine"] |
| 156 | + self.check(aff_out, m1_aff, ids=False) |
| 157 | + self.assertEqual(meta_out, m1_meta) |
| 158 | + |
| 159 | + # TO -> Inverse |
| 160 | + d_dict_meta_dict = t_to_meta.inverse(d_dict_meta) |
| 161 | + self.assertEqual( |
| 162 | + sorted(d_dict_meta_dict.keys()), |
| 163 | + [ |
| 164 | + "m1", |
| 165 | + PostFix.meta("m1"), |
| 166 | + PostFix.transforms("m1"), |
| 167 | + "m2", |
| 168 | + PostFix.meta("m2"), |
| 169 | + PostFix.transforms("m2"), |
| 170 | + "m3", |
| 171 | + ], |
| 172 | + ) |
| 173 | + self.check(d_dict_meta_dict["m3"], m3.as_tensor(), ids=False) # unchanged (except deep copy in inverse) |
| 174 | + self.check(d_dict_meta_dict["m1"], m1.as_tensor(), ids=False) |
| 175 | + meta_out = {k: v for k, v in d_dict_meta_dict["m1_meta_dict"].items() if k != "affine"} |
| 176 | + aff_out = d_dict_meta_dict["m1_meta_dict"]["affine"] |
| 177 | + self.check(aff_out, m1_aff, ids=False) |
| 178 | + self.assertEqual(meta_out, m1_meta) |
| 179 | + |
| 180 | + |
| 181 | +if __name__ == "__main__": |
| 182 | + unittest.main() |
0 commit comments