@@ -88,15 +88,15 @@ def test_validation():
8888 ctx = mx .cpu ()
8989 loss = gluon .loss .L2Loss ()
9090 acc = mx .metric .Accuracy ()
91- evaluation_loss = gluon .loss .L1Loss ()
91+ val_loss = gluon .loss .L1Loss ()
9292 net .initialize (ctx = ctx )
9393 trainer = gluon .Trainer (net .collect_params (), 'sgd' , {'learning_rate' : 0.001 })
9494 est = Estimator (net = net ,
9595 loss = loss ,
9696 train_metrics = acc ,
9797 trainer = trainer ,
9898 context = ctx ,
99- evaluation_loss = evaluation_loss )
99+ val_loss = val_loss )
100100 # Input dataloader
101101 est .fit (train_data = dataloader ,
102102 val_data = dataloader ,
@@ -376,16 +376,16 @@ def test_default_handlers():
376376 assert isinstance (handlers [1 ], MetricHandler )
377377 assert isinstance (handlers [4 ], LoggingHandler )
378378
379- def test_eval_net ():
380- ''' test estimator with a different evaluation net '''
379+ def test_val_net ():
380+ ''' test estimator with different training and validation networks '''
381381 ''' test weight sharing of sequential networks without namescope '''
382382 net = _get_test_network ()
383- eval_net = _get_test_network (params = net .collect_params ())
383+ val_net = _get_test_network (params = net .collect_params ())
384384 dataloader , dataiter = _get_test_data ()
385385 num_epochs = 1
386386 ctx = mx .cpu ()
387387 loss = gluon .loss .L2Loss ()
388- evaluation_loss = gluon .loss .L2Loss ()
388+ val_loss = gluon .loss .L2Loss ()
389389 acc = mx .metric .Accuracy ()
390390 net .initialize (ctx = ctx )
391391 trainer = gluon .Trainer (net .collect_params (), 'sgd' , {'learning_rate' : 0.001 })
@@ -394,8 +394,8 @@ def test_eval_net():
394394 train_metrics = acc ,
395395 trainer = trainer ,
396396 context = ctx ,
397- evaluation_loss = evaluation_loss ,
398- eval_net = eval_net )
397+ val_loss = val_loss ,
398+ val_net = val_net )
399399
400400 with assert_raises (RuntimeError ):
401401 est .fit (train_data = dataloader ,
@@ -404,16 +404,16 @@ def test_eval_net():
404404
405405 ''' test weight sharing of sequential networks with namescope '''
406406 net = _get_test_network_with_namescope ()
407- eval_net = _get_test_network_with_namescope (params = net .collect_params ())
407+ val_net = _get_test_network_with_namescope (params = net .collect_params ())
408408 net .initialize (ctx = ctx )
409409 trainer = gluon .Trainer (net .collect_params (), 'sgd' , {'learning_rate' : 0.001 })
410410 est = Estimator (net = net ,
411411 loss = loss ,
412412 train_metrics = acc ,
413413 trainer = trainer ,
414414 context = ctx ,
415- evaluation_loss = evaluation_loss ,
416- eval_net = eval_net )
415+ val_loss = val_loss ,
416+ val_net = val_net )
417417
418418 est .fit (train_data = dataloader ,
419419 val_data = dataloader ,
@@ -422,20 +422,20 @@ def test_eval_net():
422422 ''' test weight sharing of two resnets '''
423423 net = gluon .model_zoo .vision .resnet18_v1 (pretrained = False , ctx = ctx )
424424 net .output = gluon .nn .Dense (10 )
425- eval_net = gluon .model_zoo .vision .resnet18_v1 (pretrained = False , ctx = ctx )
426- eval_net .output = gluon .nn .Dense (10 , params = net .collect_params ())
425+ val_net = gluon .model_zoo .vision .resnet18_v1 (pretrained = False , ctx = ctx )
426+ val_net .output = gluon .nn .Dense (10 , params = net .collect_params ())
427427 dataset = gluon .data .ArrayDataset (mx .nd .zeros ((10 , 3 , 224 , 224 )), mx .nd .zeros ((10 , 10 )))
428428 dataloader = gluon .data .DataLoader (dataset = dataset , batch_size = 5 )
429429 net .initialize (ctx = ctx )
430- eval_net .initialize (ctx = ctx )
430+ val_net .initialize (ctx = ctx )
431431 trainer = gluon .Trainer (net .collect_params (), 'sgd' , {'learning_rate' : 0.001 })
432432 est = Estimator (net = net ,
433433 loss = loss ,
434434 train_metrics = acc ,
435435 trainer = trainer ,
436436 context = ctx ,
437- evaluation_loss = evaluation_loss ,
438- eval_net = eval_net )
437+ val_loss = val_loss ,
438+ val_net = val_net )
439439
440440 est .fit (train_data = dataloader ,
441441 val_data = dataloader ,
0 commit comments