Skip to content
This repository was archived by the owner on Nov 17, 2023. It is now read-only.

Commit fb9cdb1

Browse files
author
Rohit Kumar Srivastava
committed
removing tests not required for vector testing
1 parent 12e7736 commit fb9cdb1

File tree

2 files changed

+18
-152
lines changed

2 files changed

+18
-152
lines changed

python/mxnet/test_utils.py

Lines changed: 4 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -264,15 +264,13 @@ def assign_each2(input1, input2, function):
264264

265265
# For testing Large Tensors having total size > 2^32 elements
266266
def create_2d_tensor(rows, columns, dtype=np.int64):
267-
a = nd.arange(0, rows, dtype=dtype).reshape(rows, 1)
268-
b = nd.broadcast_to(a, shape=(a.shape[0], columns))
269-
return nd.array(b, dtype=dtype)
267+
a = mx.nd.arange(0, rows, dtype=dtype).reshape(rows, 1)
268+
b = mx.nd.broadcast_to(a, shape=(a.shape[0], columns))
269+
return b
270270

271271
# For testing Large Vectors having total size > 2^32 elements
272272
def create_vector(size, dtype=np.int64):
273-
a = nd.arange(0, size, dtype=dtype)
274-
# Implicitly calling nd.waitall()
275-
assert a[0] == 0
273+
a = mx.nd.arange(0, size, dtype=dtype)
276274
return a
277275

278276
def rand_sparse_ndarray(shape, stype, density=None, dtype=None, distribution=None,

tests/nightly/test_large_vector.py

Lines changed: 14 additions & 146 deletions
Original file line numberDiff line numberDiff line change
@@ -18,32 +18,22 @@
1818
import numpy as np
1919
import mxnet as mx
2020

21-
from mxnet.test_utils import rand_ndarray, assert_almost_equal, rand_coord_2d, default_context, create_vector
21+
from mxnet.test_utils import rand_ndarray, assert_almost_equal, rand_coord_2d, create_vector
2222
from mxnet import gluon, nd
2323
from tests.python.unittest.common import with_seed
2424

2525
# dimension constants
2626
LARGE_X = 5000000000
2727
MEDIUM_X = 1000000000
28-
LARGE_Y = 100000
29-
SMALL_Y = 1
3028

3129

3230
def test_slice():
3331
a = nd.ones(LARGE_X)
3432
res = nd.slice(a, begin=(LARGE_X - MEDIUM_X), end=LARGE_X)
33+
assert a[0] == 1
3534
assert res.shape[0] == MEDIUM_X
3635

3736

38-
def test_gluon_embedding():
39-
m = gluon.nn.Embedding(1, LARGE_Y)
40-
m.initialize()
41-
a = nd.zeros((LARGE_Y, 1))
42-
b = m(a)
43-
assert b.shape == (LARGE_Y, 1, LARGE_Y)
44-
assert b.asnumpy().size == LARGE_X*2
45-
46-
4737
def test_ndarray_zeros():
4838
a = nd.zeros(shape=LARGE_X)
4939
assert a[-1] == 0
@@ -73,7 +63,7 @@ def test_ndarray_random_randint():
7363
a = nd.random.randint(low_large_value, high_large_value, dtype=np.int64)
7464
low = mx.nd.array([low_large_value], dtype='int64')
7565
high = mx.nd.array([high_large_value], dtype='int64')
76-
assert a.__gt__(low) and a.__lt__(high)
66+
assert a > low and a < high
7767

7868

7969
def test_ndarray_empty():
@@ -93,36 +83,22 @@ def test_elementwise():
9383

9484

9585
def test_reduce():
96-
a = nd.ones(shape=(LARGE_X, SMALL_Y))
86+
a = nd.ones(shape=(LARGE_X, 1))
9787
assert nd.sum(a).asnumpy() == a.shape[0] * a.shape[1]
9888

9989

100-
def test_broadcast():
101-
a = nd.ones(shape=(LARGE_X, SMALL_Y*2))
102-
b = nd.arange(0, LARGE_X).reshape(LARGE_X, 1)
103-
res = nd.broadcast_to(b, shape=(b.shape[0], SMALL_Y*2))
104-
assert np.sum(res[-1].asnumpy() == LARGE_X) == res.shape[1]
105-
res = mx.nd.broadcast_like(b, a)
106-
assert np.sum(res[-1].asnumpy() == LARGE_X) == res.shape[1]
107-
108-
10990
def test_clip():
110-
a = nd.arange(0, LARGE_X)
91+
a = create_vector(LARGE_X)
11192
res = nd.clip(a, a_min=100, a_max=1000)
11293
assert np.sum(res[-1].asnumpy() == 1000) == 1
11394

11495

11596
def test_argmin():
116-
a = nd.arange(0, LARGE_X)
97+
a = create_vector(LARGE_X, dtype=np.float32)
98+
assert a[0] == 0
11799
idx = mx.nd.argmin(a, axis=0)
118-
assert idx.shape[0] == SMALL_Y
119-
120-
121-
def test_tile():
122-
a = nd.arange(0, LARGE_X)
123-
b = nd.tile(a, reps=(1,2))
124-
assert b[0][LARGE_X] == b[0][0]
125-
assert b[0][LARGE_X-1] == b[0][-1]
100+
assert idx[0] == 0
101+
assert idx.shape[0] == 1
126102

127103

128104
def test_take():
@@ -169,114 +145,6 @@ def test_Dense(ctx=mx.cpu(0)):
169145
assert res.shape == (LARGE_X, 2)
170146

171147

172-
def test_pick():
173-
a = mx.nd.ones(shape=(LARGE_X, 2))
174-
b = mx.nd.ones(shape=LARGE_X)
175-
res = mx.nd.pick(a, b)
176-
assert res.shape == b.shape
177-
178-
179-
def test_depthtospace():
180-
def numpy_depth_to_space(x, blocksize):
181-
b, c, h, w = x.shape[0], x.shape[1], x.shape[2], x.shape[3]
182-
tmp = np.reshape(x, [b, blocksize, blocksize, c // (blocksize**2), h, w])
183-
tmp = np.transpose(tmp, [0, 3, 4, 1, 5, 2])
184-
y = np.reshape(tmp, [b, c // (blocksize**2), h * blocksize, w * blocksize])
185-
return y
186-
187-
shape_inp = (LARGE_X, 4, 1, 1)
188-
data = rand_ndarray(shape_inp, 'default')
189-
data_np = data.asnumpy()
190-
expected = numpy_depth_to_space(data_np, 2)
191-
output = mx.nd.depth_to_space(data, 2)
192-
assert_almost_equal(output.asnumpy(), expected, atol=1e-3, rtol=1e-3)
193-
194-
195-
def test_spacetodepth():
196-
def numpy_space_to_depth(x, blocksize):
197-
b, c, h, w = x.shape[0], x.shape[1], x.shape[2], x.shape[3]
198-
tmp = np.reshape(x, [b, c, h // blocksize, blocksize, w // blocksize, blocksize])
199-
tmp = np.transpose(tmp, [0, 3, 5, 1, 2, 4])
200-
y = np.reshape(tmp, [b, c * (blocksize**2), h // blocksize, w // blocksize])
201-
return y
202-
203-
shape_inp = (LARGE_X, 1, 2, 2)
204-
data = rand_ndarray(shape_inp, 'default')
205-
data_np = data.asnumpy()
206-
expected = numpy_space_to_depth(data_np, 2)
207-
output = mx.nd.space_to_depth(data, 2)
208-
assert_almost_equal(output.asnumpy(), expected, atol=1e-3, rtol=1e-3)
209-
210-
@with_seed()
211-
def test_diag():
212-
a_np = np.random.random((LARGE_X, 2)).astype(np.float32)
213-
a = mx.nd.array(a_np)
214-
215-
# k == 0
216-
r = mx.nd.diag(a)
217-
assert_almost_equal(r.asnumpy(), np.diag(a_np))
218-
219-
# k == 1
220-
k = 1
221-
r = mx.nd.diag(a, k=k)
222-
assert_almost_equal(r.asnumpy(), np.diag(a_np, k=k))
223-
224-
# k == -1
225-
k = -1
226-
r = mx.nd.diag(a, k=k)
227-
assert_almost_equal(r.asnumpy(), np.diag(a_np, k=k))
228-
229-
230-
@with_seed()
231-
def test_ravel_multi_index():
232-
x1, y1 = rand_coord_2d((LARGE_X - 100), LARGE_X, SMALL_Y, 4)
233-
x2, y2 = rand_coord_2d((LARGE_X - 200), LARGE_X, SMALL_Y, 3)
234-
x3, y3 = rand_coord_2d((LARGE_X - 300), LARGE_X, SMALL_Y, 2)
235-
indices_2d = [[x1, x2, x3], [y1, y2, y3]]
236-
idx = mx.nd.ravel_multi_index(mx.nd.array(indices_2d, dtype=np.int64), shape=(LARGE_X, 5))
237-
idx_numpy = np.ravel_multi_index(indices_2d, (LARGE_X, 5))
238-
assert np.sum(1 for i in range(idx.size) if idx[i] == idx_numpy[i]) == 3
239-
240-
241-
@with_seed()
242-
def test_unravel_index():
243-
x1, y1 = rand_coord_2d((LARGE_X - 100), LARGE_X, SMALL_Y, 4)
244-
x2, y2 = rand_coord_2d((LARGE_X - 200), LARGE_X, SMALL_Y, 3)
245-
x3, y3 = rand_coord_2d((LARGE_X - 300), LARGE_X, SMALL_Y, 2)
246-
original_2d_indices = [[x1, x2, x3], [y1, y2, y3]]
247-
idx_numpy = np.ravel_multi_index(original_2d_indices, (LARGE_X, 5))
248-
indices_2d = mx.nd.unravel_index(mx.nd.array(idx_numpy, dtype=np.int64), shape=(LARGE_X, 5))
249-
assert (indices_2d.asnumpy() == np.array(original_2d_indices)).all()
250-
251-
252-
def test_transpose():
253-
b = nd.arange(0, LARGE_X, dtype=np.int64).reshape(1, LARGE_X)
254-
t = b.T
255-
assert t.shape == (LARGE_X, 1)
256-
assert t[-1, 0].asnumpy() == (LARGE_X - 1)
257-
258-
259-
def test_swapaxes():
260-
b = nd.arange(0, LARGE_X, dtype=np.int64).reshape(LARGE_X, 1)
261-
t = nd.swapaxes(b, dim1=0, dim2=1)
262-
assert t.shape == (1, LARGE_X)
263-
assert t[0, -1].asnumpy() == (LARGE_X - 1)
264-
265-
266-
def test_flip():
267-
b = nd.arange(0, LARGE_X, dtype=np.int64).reshape(1, LARGE_X)
268-
t = nd.flip(b, axis=1)
269-
assert t.shape == (1, LARGE_X)
270-
assert t[-1, -1].asnumpy() == 0
271-
272-
273-
def test_softmax():
274-
input_data = nd.ones((2, LARGE_X))
275-
output = nd.softmax(input_data, axis=0)
276-
assert output[0][0] == 0.5
277-
assert output[-1][-1] == 0.5
278-
279-
280148
def test_argsort():
281149
b = create_vector(size=LARGE_X)
282150
s = nd.argsort(b, axis=0, is_ascend=False, dtype=np.int64)
@@ -287,19 +155,19 @@ def test_argsort():
287155
def test_sort():
288156
b = create_vector(size=LARGE_X)
289157
s = nd.sort(b, axis=0, is_ascend=False)
290-
assert np.sum(s[-1][SMALL_Y//2:SMALL_Y].asnumpy() == 0).all()
158+
assert np.sum(s[-1].asnumpy() == 0).all()
291159
s = nd.sort(b, is_ascend=True)
292160
assert np.sum(s[0].asnumpy() == 0).all()
293161

294162

295163
def test_topk():
296164
b = create_vector(size=LARGE_X)
297-
k = nd.topk(b, k=10, axis=0, dtype=np.int64)
298-
assert np.sum(k.asnumpy() == (LARGE_X - 1)) == SMALL_Y
165+
ind = nd.topk(b, k=10, axis=0, dtype=np.int64)
166+
assert np.sum(ind.asnumpy() == (LARGE_X - 1)) == 1
299167
ind, val = mx.nd.topk(b, k=3, axis=0, dtype=np.int64, ret_typ="both", is_ascend=False)
300168
assert np.all(ind == val)
301-
l = nd.topk(b, k=1, axis=0, dtype=np.int64, ret_typ="value")
302-
assert l.sum() == (LARGE_X - 1)
169+
val = nd.topk(b, k=1, axis=0, dtype=np.int64, ret_typ="value")
170+
assert val.sum() == (LARGE_X - 1)
303171

304172

305173
if __name__ == '__main__':

0 commit comments

Comments
 (0)