|
| 1 | +# %% [markdown] |
| 2 | +# What this example does |
| 3 | +# - Run a batch conversion on a parquet file with an image column. |
| 4 | +# |
| 5 | +# Requirements |
| 6 | +# - Python 3.9+ |
| 7 | +# - Install Docling: `pip install docling` |
| 8 | +# |
| 9 | +# How to run |
| 10 | +# - `python docs/examples/parquet_images.py FILE` |
| 11 | +# |
| 12 | +# The parquet file should be in the format similar to the ViDoRe V3 dataset. |
| 13 | +# https://huggingface.co/collections/vidore/vidore-benchmark-v3 |
| 14 | +# |
| 15 | +# For example: |
| 16 | +# - https://huggingface.co/datasets/vidore/vidore_v3_hr/blob/main/corpus/test-00000-of-00001.parquet |
| 17 | +# |
| 18 | +# ### Start models with vllm |
| 19 | +# ```console |
| 20 | +# vllm serve ibm-granite/granite-docling-258M \ |
| 21 | +# --host 127.0.0.1 --port 8000 \ |
| 22 | +# --max-num-seqs 512 \ |
| 23 | +# --max-num-batched-tokens 8192 \ |
| 24 | +# --enable-chunked-prefill \ |
| 25 | +# --gpu-memory-utilization 0.9 |
| 26 | +# ``` |
| 27 | +# %% |
| 28 | + |
| 29 | +import io |
| 30 | +import time |
| 31 | +from pathlib import Path |
| 32 | +from typing import Annotated, Literal |
| 33 | + |
| 34 | +import pyarrow.parquet as pq |
| 35 | +import typer |
| 36 | +from PIL import Image |
| 37 | + |
| 38 | +from docling.datamodel import vlm_model_specs |
| 39 | +from docling.datamodel.base_models import ConversionStatus, DocumentStream, InputFormat |
| 40 | +from docling.datamodel.pipeline_options import ( |
| 41 | + PdfPipelineOptions, |
| 42 | + PipelineOptions, |
| 43 | + RapidOcrOptions, |
| 44 | + VlmPipelineOptions, |
| 45 | +) |
| 46 | +from docling.datamodel.pipeline_options_vlm_model import ApiVlmOptions, ResponseFormat |
| 47 | +from docling.datamodel.settings import settings |
| 48 | +from docling.document_converter import DocumentConverter, ImageFormatOption |
| 49 | +from docling.pipeline.base_pipeline import ConvertPipeline |
| 50 | +from docling.pipeline.standard_pdf_pipeline import StandardPdfPipeline |
| 51 | +from docling.pipeline.vlm_pipeline import VlmPipeline |
| 52 | + |
| 53 | + |
| 54 | +def process_document( |
| 55 | + images: list[Image.Image], chunk_idx: int, doc_converter: DocumentConverter |
| 56 | +): |
| 57 | + """Builds a tall image and sends it through Docling.""" |
| 58 | + |
| 59 | + print(f"\n--- Processing chunk {chunk_idx} with {len(images)} images ---") |
| 60 | + |
| 61 | + # Convert images to mode RGB (TIFF pages must match) |
| 62 | + rgb_images = [im.convert("RGB") for im in images] |
| 63 | + |
| 64 | + # First image is the base frame |
| 65 | + first = rgb_images[0] |
| 66 | + rest = rgb_images[1:] |
| 67 | + |
| 68 | + # Create multi-page TIFF using PIL frames |
| 69 | + buf = io.BytesIO() |
| 70 | + first.save( |
| 71 | + buf, |
| 72 | + format="TIFF", |
| 73 | + save_all=True, |
| 74 | + append_images=rest, |
| 75 | + compression="tiff_deflate", # good compression, optional |
| 76 | + ) |
| 77 | + buf.seek(0) |
| 78 | + |
| 79 | + # Docling conversion |
| 80 | + doc_stream = DocumentStream(name=f"doc_{chunk_idx}.tiff", stream=buf) |
| 81 | + |
| 82 | + start_time = time.time() |
| 83 | + conv_result = doc_converter.convert(doc_stream) |
| 84 | + runtime = time.time() - start_time |
| 85 | + |
| 86 | + assert conv_result.status == ConversionStatus.SUCCESS |
| 87 | + |
| 88 | + pages = len(conv_result.pages) |
| 89 | + print( |
| 90 | + f"Chunk {chunk_idx} converted in {runtime:.2f} sec ({pages / runtime:.2f} pages/s)." |
| 91 | + ) |
| 92 | + |
| 93 | + |
| 94 | +def run( |
| 95 | + filename: Annotated[Path, typer.Argument()] = Path( |
| 96 | + "docs/examples/data/vidore_v3_hr-slice.parquet" |
| 97 | + ), |
| 98 | + doc_size: int = 192, |
| 99 | + batch_size: int = 64, |
| 100 | + pipeline: Literal["standard", "vlm"] = "standard", |
| 101 | +): |
| 102 | + if pipeline == "standard": |
| 103 | + pipeline_cls: type[ConvertPipeline] = StandardPdfPipeline |
| 104 | + pipeline_options: PipelineOptions = PdfPipelineOptions( |
| 105 | + # ocr_options=RapidOcrOptions(backend="openvino"), |
| 106 | + ocr_batch_size=batch_size, |
| 107 | + layout_batch_size=batch_size, |
| 108 | + table_batch_size=4, |
| 109 | + ) |
| 110 | + elif pipeline == "vlm": |
| 111 | + settings.perf.page_batch_size = batch_size |
| 112 | + pipeline_cls = VlmPipeline |
| 113 | + vlm_options = ApiVlmOptions( |
| 114 | + url="http://localhost:8000/v1/chat/completions", |
| 115 | + params=dict( |
| 116 | + model=vlm_model_specs.GRANITEDOCLING_TRANSFORMERS.repo_id, |
| 117 | + max_tokens=4096, |
| 118 | + skip_special_tokens=True, |
| 119 | + ), |
| 120 | + prompt=vlm_model_specs.GRANITEDOCLING_TRANSFORMERS.prompt, |
| 121 | + timeout=90, |
| 122 | + scale=1.0, |
| 123 | + temperature=0.0, |
| 124 | + concurrency=batch_size, |
| 125 | + stop_strings=["</doctag>", "<|end_of_text|>"], |
| 126 | + response_format=ResponseFormat.DOCTAGS, |
| 127 | + ) |
| 128 | + pipeline_options = VlmPipelineOptions( |
| 129 | + vlm_options=vlm_options, |
| 130 | + enable_remote_services=True, # required when using a remote inference service. |
| 131 | + ) |
| 132 | + else: |
| 133 | + raise RuntimeError(f"Pipeline {pipeline} not available.") |
| 134 | + |
| 135 | + doc_converter = DocumentConverter( |
| 136 | + format_options={ |
| 137 | + InputFormat.IMAGE: ImageFormatOption( |
| 138 | + pipeline_cls=pipeline_cls, |
| 139 | + pipeline_options=pipeline_options, |
| 140 | + ) |
| 141 | + } |
| 142 | + ) |
| 143 | + |
| 144 | + start_time = time.time() |
| 145 | + doc_converter.initialize_pipeline(InputFormat.IMAGE) |
| 146 | + init_runtime = time.time() - start_time |
| 147 | + print(f"Pipeline initialized in {init_runtime:.2f} seconds.") |
| 148 | + |
| 149 | + # ------------------------------------------------------------ |
| 150 | + # Open parquet file in streaming mode |
| 151 | + # ------------------------------------------------------------ |
| 152 | + pf = pq.ParquetFile(filename) |
| 153 | + |
| 154 | + image_buffer = [] # holds up to doc_size images |
| 155 | + chunk_idx = 0 |
| 156 | + |
| 157 | + # ------------------------------------------------------------ |
| 158 | + # Stream batches from parquet |
| 159 | + # ------------------------------------------------------------ |
| 160 | + for batch in pf.iter_batches(batch_size=batch_size, columns=["image"]): |
| 161 | + col = batch.column("image") |
| 162 | + |
| 163 | + # Extract Python objects (PIL images) |
| 164 | + # Arrow stores them as Python objects inside an ObjectArray |
| 165 | + for i in range(len(col)): |
| 166 | + img_dict = col[i].as_py() # {"bytes": ..., "path": ...} |
| 167 | + pil_image = Image.open(io.BytesIO(img_dict["bytes"])) |
| 168 | + image_buffer.append(pil_image) |
| 169 | + |
| 170 | + # If enough images gathered → process one doc |
| 171 | + if len(image_buffer) == doc_size: |
| 172 | + process_document(image_buffer, chunk_idx, doc_converter) |
| 173 | + image_buffer.clear() |
| 174 | + chunk_idx += 1 |
| 175 | + |
| 176 | + # ------------------------------------------------------------ |
| 177 | + # Process trailing images (last partial chunk) |
| 178 | + # ------------------------------------------------------------ |
| 179 | + if image_buffer: |
| 180 | + process_document(image_buffer, chunk_idx, doc_converter) |
| 181 | + |
| 182 | + |
| 183 | +if __name__ == "__main__": |
| 184 | + typer.run(run) |
0 commit comments