-
Notifications
You must be signed in to change notification settings - Fork 2.7k
Closed
Description
I am guessing that the model provided is for machines with CUDA-capable device.
Do you guys happen to have a pre-trained CPU version for cnndm_model.bin ?
@@ -165,7 +165,7 @@ def main():
print(args.model_recover_path)
for model_recover_path in glob.glob(args.model_recover_path.strip()):
logger.info("***** Recover model: %s *****", model_recover_path)
- model_recover = torch.load(model_recover_path)
+ model_recover = torch.load(model_recover_path, map_location="cpu")
DATA_DIR=../cnndm_data
MODEL_RECOVER_PATH=../cnndm_model.bin
EVAL_SPLIT=test
export PYTORCH_PRETRAINED_BERT_CACHE=/tmp/bert-cased-pretrained-cache
# run decoding
python biunilm/decode_seq2seq.py --fp16 --amp --bert_model bert-large-cased --new_segment_ids --mode s2s --need_score_t
races \
--input_file ${DATA_DIR}/${EVAL_SPLIT}.src --split ${EVAL_SPLIT} --tokenized_input \
--model_recover_path ${MODEL_RECOVER_PATH} \
--max_seq_length 768 --max_tgt_length 128 \
--batch_size 64 --beam_size 5 --length_penalty 0 \
--forbid_duplicate_ngrams --forbid_ignore_word ".|[X_SEP]"
11/04/2019 15:55:06 - INFO - pytorch_pretrained_bert.tokenization - loading vocabulary file https://s3.amazonaws.com/
models.huggingface.co/bert/bert-large-cased-vocab.txt from cache at /tmp/bert-cased-pretrained-cache/cee054f6aafe5e2cf8
16d2228704e326446785f940f5451a5b26033516a4ac3d.e13dbb970cb325137104fb2e5f36fe865f27746c6b526f6352861b1980eb80b1
THCudaCheck FAIL file=/pytorch/aten/src/THC/THCGeneral.cpp line=51 error=38 : no CUDA-capable device is detected
Traceback (most recent call last):
File "biunilm/decode_seq2seq.py", line 254, in <module>
main()
File "biunilm/decode_seq2seq.py", line 147, in main
amp_handle = amp.init(enable_caching=True)
File "/home/john/.virtualenvs/unilm/lib/python3.6/site-packages/apex/amp/amp.py", line 65, in init
handle = AmpHandle(enable_caching, verbose)
File "/home/john/.virtualenvs/unilm/lib/python3.6/site-packages/apex/amp/handle.py", line 14, in __init__
self._default_scaler = LossScaler()
File "/home/john/.virtualenvs/unilm/lib/python3.6/site-packages/apex/amp/scaler.py", line 35, in __init__
self._overflow_buf = torch.cuda.IntTensor([0])
File "/home/john/.virtualenvs/unilm/lib/python3.6/site-packages/torch/cuda/__init__.py", line 163, in _lazy_init
torch._C._cuda_init()
RuntimeError: cuda runtime error (38) : no CUDA-capable device is detected at /pytorch/aten/src/THC/THCGeneral.cpp:51
[1] 72305 exit 1 python biunilm/decode_seq2seq.py --fp16 --amp --bert_model bert-large-cased
without --amp:
Traceback (most recent call last):
File "biunilm/decode_seq2seq.py", line 254, in <module>
main()
File "biunilm/decode_seq2seq.py", line 216, in main
position_ids, input_mask, task_idx=task_idx, mask_qkv=mask_qkv)
File "/home/john/.virtualenvs/unilm/lib/python3.6/site-packages/torch/nn/modules/module.py", line 493, in __call__
result = self.forward(*input, **kwargs)
File "/home/john/code/unilm/src/pytorch_pretrained_bert/modeling.py", line 1409, in forward
return self.beam_search(input_ids, token_type_ids, position_ids, attention_mask, task_idx=task_idx, mask_qkv=mask_qkv)
File "/home/john/code/unilm/src/pytorch_pretrained_bert/modeling.py", line 1528, in beam_search
output_all_encoded_layers=True, prev_embedding=prev_embedding, prev_encoded_layers=prev_encoded_layers, mask_qkv=mask_qkv)
File "/home/john/.virtualenvs/unilm/lib/python3.6/site-packages/torch/nn/modules/module.py", line 493, in __call__
result = self.forward(*input, **kwargs)
File "/home/john/code/unilm/src/pytorch_pretrained_bert/modeling.py", line 1062, in forward
input_ids, token_type_ids, attention_mask)
File "/home/john/code/unilm/src/pytorch_pretrained_bert/modeling.py", line 1037, in get_extended_attention_mask
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
File "/home/john/.virtualenvs/unilm/lib/python3.6/site-packages/torch/tensor.py", line 371, in __rsub__
return _C._VariableFunctions.rsub(self, other)
RuntimeError: "add_cpu" not implemented for 'Half'
Packages:
pytorch-pretrained-bert 0.4.0
torch 1.1.0
tensorboardX 1.9
apex 0.1
Metadata
Metadata
Assignees
Labels
No labels