Skip to content

Commit 347e587

Browse files
authored
Merge pull request #3376 from liyun95/preview
update dense vector
2 parents ae50d53 + 2b93cc2 commit 347e587

File tree

1 file changed

+17
-31
lines changed

1 file changed

+17
-31
lines changed

site/en/userGuide/schema/dense-vector.md

Lines changed: 17 additions & 31 deletions
Original file line numberDiff line numberDiff line change
@@ -85,7 +85,8 @@ Working with dense vectors in Milvus typically follows the same pattern:
8585
2. Insert vector data (in the chosen numeric format).
8686
3. Create an index on the dense vector field.
8787
4. Load the collection into memory and run semantic search on the vectors.
88-
5. Define a dense vector field
88+
89+
### 1. Define a dense vector field
8990

9091
Vector fields in Milvus store the embeddings used for similarity search. When defining one:
9192

@@ -94,15 +95,10 @@ Vector fields in Milvus store the embeddings used for similarity search. When de
9495
- Ensure the type exactly matches the insertion/search data you will use later.
9596

9697
<div class="filter">
97-
98-
<a href="#fp32">FP32</a>
99-
100-
<a href="#fp16">FP16</a>
101-
102-
<a href="#bf16">BF16</a>
103-
104-
<a href="#int8">INT8</a>
105-
98+
<a href="#fp32">FP32</a>
99+
<a href="#fp16">FP16</a>
100+
<a href="#bf16">BF16</a>
101+
<a href="#int8">INT8</a>
106102
</div>
107103

108104
<div class="filter-fp32">
@@ -229,7 +225,7 @@ client.create_collection(
229225

230226
</div>
231227

232-
1. Insert vector data
228+
### 2. Insert vector data
233229

234230
After creating the collection, insert your vector data into the vector field.
235231

@@ -241,15 +237,10 @@ Milvus expects the vectors to:
241237
Below are examples of how to generate and insert sample data for each format.
242238

243239
<div class="filter">
244-
245-
<a href="#fp32">FP32</a>
246-
247-
<a href="#fp16">FP16</a>
248-
249-
<a href="#bf16">BF16</a>
250-
251-
<a href="#int8">INT8</a>
252-
240+
<a href="#fp32">FP32</a>
241+
<a href="#fp16">FP16</a>
242+
<a href="#bf16">BF16</a>
243+
<a href="#int8">INT8</a>
253244
</div>
254245

255246
<div class="filter-fp32">
@@ -329,7 +320,7 @@ print(f"Inserted {res['insert_count']} entities")
329320

330321
</div>
331322

332-
1. Create index on dense vector field
323+
### 3. Create index on dense vector field
333324

334325
To accelerate semantic search, it is mandatory to create a vector index before searches.
335326

@@ -360,7 +351,7 @@ client.create_index(
360351

361352
</div>
362353

363-
1. Semantic search on dense vectors
354+
### 4. Semantic search on dense vectors
364355

365356
Before performing vector searches, load your collection:
366357

@@ -376,15 +367,10 @@ print(client.get_load_state(collection_name=COLLECTION_NAME))
376367
Then, run a vector search using a query vector of the same type and dimension as your stored vectors.
377368

378369
<div class="filter">
379-
380-
<a href="#fp32">FP32</a>
381-
382-
<a href="#fp16">FP16</a>
383-
384-
<a href="#bf16">BF16</a>
385-
386-
<a href="#int8">INT8</a>
387-
370+
<a href="#fp32">FP32</a>
371+
<a href="#fp16">FP16</a>
372+
<a href="#bf16">BF16</a>
373+
<a href="#int8">INT8</a>
388374
</div>
389375

390376
<div class="filter-fp32">

0 commit comments

Comments
 (0)