@@ -85,7 +85,8 @@ Working with dense vectors in Milvus typically follows the same pattern:
85852 . Insert vector data (in the chosen numeric format).
86863 . Create an index on the dense vector field.
87874 . Load the collection into memory and run semantic search on the vectors.
88- 5 . Define a dense vector field
88+
89+ ### 1. Define a dense vector field
8990
9091Vector fields in Milvus store the embeddings used for similarity search. When defining one:
9192
@@ -94,15 +95,10 @@ Vector fields in Milvus store the embeddings used for similarity search. When de
9495- Ensure the type exactly matches the insertion/search data you will use later.
9596
9697<div class =" filter " >
97-
98- <a href =" #fp32 " >FP32</a >
99-
100- <a href =" #fp16 " >FP16</a >
101-
102- <a href =" #bf16 " >BF16</a >
103-
104- <a href =" #int8 " >INT8</a >
105-
98+ <a href="#fp32">FP32</a>
99+ <a href="#fp16">FP16</a>
100+ <a href="#bf16">BF16</a>
101+ <a href="#int8">INT8</a>
106102</div >
107103
108104<div class =" filter-fp32 " >
@@ -229,7 +225,7 @@ client.create_collection(
229225
230226</div >
231227
232- 1 . Insert vector data
228+ ### 2 . Insert vector data
233229
234230After creating the collection, insert your vector data into the vector field.
235231
@@ -241,15 +237,10 @@ Milvus expects the vectors to:
241237Below are examples of how to generate and insert sample data for each format.
242238
243239<div class =" filter " >
244-
245- <a href =" #fp32 " >FP32</a >
246-
247- <a href =" #fp16 " >FP16</a >
248-
249- <a href =" #bf16 " >BF16</a >
250-
251- <a href =" #int8 " >INT8</a >
252-
240+ <a href="#fp32">FP32</a>
241+ <a href="#fp16">FP16</a>
242+ <a href="#bf16">BF16</a>
243+ <a href="#int8">INT8</a>
253244</div >
254245
255246<div class =" filter-fp32 " >
@@ -329,7 +320,7 @@ print(f"Inserted {res['insert_count']} entities")
329320
330321</div >
331322
332- 1 . Create index on dense vector field
323+ ### 3 . Create index on dense vector field
333324
334325To accelerate semantic search, it is mandatory to create a vector index before searches.
335326
@@ -360,7 +351,7 @@ client.create_index(
360351
361352</div >
362353
363- 1 . Semantic search on dense vectors
354+ ### 4 . Semantic search on dense vectors
364355
365356Before performing vector searches, load your collection:
366357
@@ -376,15 +367,10 @@ print(client.get_load_state(collection_name=COLLECTION_NAME))
376367Then, run a vector search using a query vector of the same type and dimension as your stored vectors.
377368
378369<div class =" filter " >
379-
380- <a href =" #fp32 " >FP32</a >
381-
382- <a href =" #fp16 " >FP16</a >
383-
384- <a href =" #bf16 " >BF16</a >
385-
386- <a href =" #int8 " >INT8</a >
387-
370+ <a href="#fp32">FP32</a>
371+ <a href="#fp16">FP16</a>
372+ <a href="#bf16">BF16</a>
373+ <a href="#int8">INT8</a>
388374</div >
389375
390376<div class =" filter-fp32 " >
0 commit comments