diff --git a/tests/test_extensions/test_sklearn_extension/test_sklearn_extension.py b/tests/test_extensions/test_sklearn_extension/test_sklearn_extension.py index a906d7ebd..a8cf9c989 100644 --- a/tests/test_extensions/test_sklearn_extension/test_sklearn_extension.py +++ b/tests/test_extensions/test_sklearn_extension/test_sklearn_extension.py @@ -353,7 +353,24 @@ def test_serialize_pipeline(self): ) fixture_short_name = "sklearn.Pipeline(StandardScaler,DummyClassifier)" - if version.parse(sklearn.__version__) >= version.parse("0.21.0"): + if version.parse(sklearn.__version__) >= version.parse("1.0"): + fixture_description = ( + "Pipeline of transforms with a final estimator.\n\nSequentially" + " apply a list of transforms and a final estimator.\n" + "Intermediate steps of the pipeline must be 'transforms', that " + "is, they\nmust implement `fit` and `transform` methods.\nThe final " + "estimator only needs to implement `fit`.\nThe transformers in " + "the pipeline can be cached using ``memory`` argument.\n\nThe " + "purpose of the pipeline is to assemble several steps that can " + "be\ncross-validated together while setting different parameters" + ". For this, it\nenables setting parameters of the various steps" + " using their names and the\nparameter name separated by a `'__'`," + " as in the example below. A step's\nestimator may be replaced " + "entirely by setting the parameter with its name\nto another " + "estimator, or a transformer removed by setting it to\n" + "`'passthrough'` or `None`." + ) + elif version.parse(sklearn.__version__) >= version.parse("0.21.0"): fixture_description = ( "Pipeline of transforms with a final estimator.\n\nSequentially" " apply a list of transforms and a final estimator.\n" @@ -443,7 +460,24 @@ def test_serialize_pipeline_clustering(self): ) fixture_short_name = "sklearn.Pipeline(StandardScaler,KMeans)" - if version.parse(sklearn.__version__) >= version.parse("0.21.0"): + if version.parse(sklearn.__version__) >= version.parse("1.0"): + fixture_description = ( + "Pipeline of transforms with a final estimator.\n\nSequentially" + " apply a list of transforms and a final estimator.\n" + "Intermediate steps of the pipeline must be 'transforms', that " + "is, they\nmust implement `fit` and `transform` methods.\nThe final " + "estimator only needs to implement `fit`.\nThe transformers in " + "the pipeline can be cached using ``memory`` argument.\n\nThe " + "purpose of the pipeline is to assemble several steps that can " + "be\ncross-validated together while setting different parameters" + ". For this, it\nenables setting parameters of the various steps" + " using their names and the\nparameter name separated by a `'__'`," + " as in the example below. A step's\nestimator may be replaced " + "entirely by setting the parameter with its name\nto another " + "estimator, or a transformer removed by setting it to\n" + "`'passthrough'` or `None`." + ) + elif version.parse(sklearn.__version__) >= version.parse("0.21.0"): fixture_description = ( "Pipeline of transforms with a final estimator.\n\nSequentially" " apply a list of transforms and a final estimator.\n"