From 0ce8fe5bb75211bec598934c82d3f80a999cffd7 Mon Sep 17 00:00:00 2001
From: PGijsbers
Date: Mon, 3 Oct 2022 16:04:01 +0200
Subject: [PATCH] Update Pipeline description for >=1.0
---
.../test_sklearn_extension.py | 38 ++++++++++++++++++-
1 file changed, 36 insertions(+), 2 deletions(-)
diff --git a/tests/test_extensions/test_sklearn_extension/test_sklearn_extension.py b/tests/test_extensions/test_sklearn_extension/test_sklearn_extension.py
index a906d7ebd..a8cf9c989 100644
--- a/tests/test_extensions/test_sklearn_extension/test_sklearn_extension.py
+++ b/tests/test_extensions/test_sklearn_extension/test_sklearn_extension.py
@@ -353,7 +353,24 @@ def test_serialize_pipeline(self):
)
fixture_short_name = "sklearn.Pipeline(StandardScaler,DummyClassifier)"
- if version.parse(sklearn.__version__) >= version.parse("0.21.0"):
+ if version.parse(sklearn.__version__) >= version.parse("1.0"):
+ fixture_description = (
+ "Pipeline of transforms with a final estimator.\n\nSequentially"
+ " apply a list of transforms and a final estimator.\n"
+ "Intermediate steps of the pipeline must be 'transforms', that "
+ "is, they\nmust implement `fit` and `transform` methods.\nThe final "
+ "estimator only needs to implement `fit`.\nThe transformers in "
+ "the pipeline can be cached using ``memory`` argument.\n\nThe "
+ "purpose of the pipeline is to assemble several steps that can "
+ "be\ncross-validated together while setting different parameters"
+ ". For this, it\nenables setting parameters of the various steps"
+ " using their names and the\nparameter name separated by a `'__'`,"
+ " as in the example below. A step's\nestimator may be replaced "
+ "entirely by setting the parameter with its name\nto another "
+ "estimator, or a transformer removed by setting it to\n"
+ "`'passthrough'` or `None`."
+ )
+ elif version.parse(sklearn.__version__) >= version.parse("0.21.0"):
fixture_description = (
"Pipeline of transforms with a final estimator.\n\nSequentially"
" apply a list of transforms and a final estimator.\n"
@@ -443,7 +460,24 @@ def test_serialize_pipeline_clustering(self):
)
fixture_short_name = "sklearn.Pipeline(StandardScaler,KMeans)"
- if version.parse(sklearn.__version__) >= version.parse("0.21.0"):
+ if version.parse(sklearn.__version__) >= version.parse("1.0"):
+ fixture_description = (
+ "Pipeline of transforms with a final estimator.\n\nSequentially"
+ " apply a list of transforms and a final estimator.\n"
+ "Intermediate steps of the pipeline must be 'transforms', that "
+ "is, they\nmust implement `fit` and `transform` methods.\nThe final "
+ "estimator only needs to implement `fit`.\nThe transformers in "
+ "the pipeline can be cached using ``memory`` argument.\n\nThe "
+ "purpose of the pipeline is to assemble several steps that can "
+ "be\ncross-validated together while setting different parameters"
+ ". For this, it\nenables setting parameters of the various steps"
+ " using their names and the\nparameter name separated by a `'__'`,"
+ " as in the example below. A step's\nestimator may be replaced "
+ "entirely by setting the parameter with its name\nto another "
+ "estimator, or a transformer removed by setting it to\n"
+ "`'passthrough'` or `None`."
+ )
+ elif version.parse(sklearn.__version__) >= version.parse("0.21.0"):
fixture_description = (
"Pipeline of transforms with a final estimator.\n\nSequentially"
" apply a list of transforms and a final estimator.\n"