Skip to content

JamesANZ/memory-mcp

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

22 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

🧠 Memory MCP Server

Persistent memory and context window caching for LLM conversations. Save, retrieve, and manage memories with intelligent context archiving. MongoDB-backed storage.

An MCP (Model Context Protocol) server that provides memory management and context window caching for AI coding environments like Cursor and Claude Desktop.

Trust Score

Why Use Memory MCP?

  • πŸ’Ύ Persistent Storage – MongoDB-backed memory that survives sessions
  • 🧠 Context Caching – Intelligent archiving and retrieval of conversation context
  • 🏷️ Tag-based Search – Organize and find memories by tags
  • πŸ“Š Relevance Scoring – Automatically score archived content relevance
  • ⚑ Easy Setup – One-click install in Cursor or simple manual setup

Quick Start

Ready to add memory to your AI workflow? Install in seconds:

Install in Cursor (Recommended):

πŸ”— Install in Cursor

Or install manually:

npm install -g @jamesanz/memory-mcp
# Or from source:
git clone https://github.com/JamesANZ/memory-mcp.git
cd memory-mcp && npm install && npm run build

Features

Basic Memory Tools

  • save-memories – Save memories to database (overwrites existing)
  • get-memories – Retrieve all stored memories
  • add-memories – Append new memories without overwriting
  • clear-memories – Remove all stored memories

Context Window Caching

  • archive-context – Archive conversation context with tags
  • retrieve-context – Retrieve relevant archived context
  • score-relevance – Score archived content relevance
  • create-summary – Create summaries of archived content
  • get-conversation-summaries – Get all summaries for a conversation
  • search-context-by-tags – Search archived content by tags

Installation

Cursor (One-Click)

Click the install link above or use:

cursor://anysphere.cursor-deeplink/mcp/install?name=memory-mcp&config=eyJtZW1vcnktbWNwIjp7ImNvbW1hbmQiOiJucHgiLCJhcmdzIjpbIi15IiwiQGphbWVzYW56L21lbW9yeS1tY3AiXX19

Manual Installation

Requirements: Node.js 18+, npm, MongoDB

# Clone and build
git clone https://github.com/JamesANZ/memory-mcp.git
cd memory-mcp
npm install
npm run build

# Set MongoDB connection string
export MONGODB_URI="mongodb://localhost:27017"

# Run server
npm start

Claude Desktop

Add to claude_desktop_config.json:

macOS: ~/Library/Application Support/Claude/claude_desktop_config.json
Windows: %APPDATA%\Claude\claude_desktop_config.json

{
  "mcpServers": {
    "memory-mcp": {
      "command": "node",
      "args": ["/absolute/path/to/memory-mcp/build/index.js"],
      "env": {
        "MONGODB_URI": "mongodb://localhost:27017"
      }
    }
  }
}

Restart Claude Desktop after configuration.

Configuration

Set the MongoDB connection string:

export MONGODB_URI="mongodb://localhost:27017"

Default: mongodb://localhost:27017

Usage Examples

Save Memories

Store memories from a conversation:

{
  "tool": "save-memories",
  "arguments": {
    "memories": ["User prefers TypeScript", "User works on blockchain projects"],
    "llm": "claude",
    "userId": "user123"
  }
}

Retrieve Memories

Get all stored memories:

{
  "tool": "get-memories",
  "arguments": {}
}

Archive Context

Archive conversation context when it gets too long:

{
  "tool": "archive-context",
  "arguments": {
    "conversationId": "conv-123",
    "contextMessages": ["Message 1", "Message 2"],
    "tags": ["coding", "typescript"],
    "llm": "claude"
  }
}

Retrieve Relevant Context

Get archived content relevant to current conversation:

{
  "tool": "retrieve-context",
  "arguments": {
    "conversationId": "conv-123",
    "tags": ["coding"],
    "minRelevanceScore": 0.5,
    "limit": 10
  }
}

Context Window Caching

The system automatically:

  • Archives content when context usage reaches 80%
  • Retrieves relevant content when usage drops below 30%
  • Scores relevance using keyword overlap
  • Creates summaries to condense long conversations

Use Cases

  • Long Conversations – Manage context windows for extended sessions
  • Memory Persistence – Save important information across sessions
  • Context Retrieval – Bring back relevant past conversations
  • Research Projects – Organize and tag research conversations

Technical Details

Built with: Node.js, TypeScript, MCP SDK, MongoDB
Dependencies: @modelcontextprotocol/sdk, mongodb, zod
Platforms: macOS, Windows, Linux

Storage: MongoDB (default: mongodb://localhost:27017)

Contributing

⭐ If this project helps you, please star it on GitHub! ⭐

Contributions welcome! Please open an issue or submit a pull request.

License

ISC

Support

If you find this project useful, consider supporting it:

⚑ Lightning Network

lnbc1pjhhsqepp5mjgwnvg0z53shm22hfe9us289lnaqkwv8rn2s0rtekg5vvj56xnqdqqcqzzsxqyz5vqsp5gu6vh9hyp94c7t3tkpqrp2r059t4vrw7ps78a4n0a2u52678c7yq9qyyssq7zcferywka50wcy75skjfrdrk930cuyx24rg55cwfuzxs49rc9c53mpz6zug5y2544pt8y9jflnq0ltlha26ed846jh0y7n4gm8jd3qqaautqa

β‚Ώ Bitcoin: bc1ptzvr93pn959xq4et6sqzpfnkk2args22ewv5u2th4ps7hshfaqrshe0xtp

Ξ Ethereum/EVM: 0x42ea529282DDE0AA87B42d9E83316eb23FE62c3f

About

A simple MCP server that stores and retrieves memories from multiple LLMs.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published