Authors: Po-Yuan Mao, Cheng-Chang Tsai, Chun-Shien Lu
Paper: arXiv:2507.21195
Project Page: https://mao718.github.io/blog/2025/MaXive/
This repository contains the official implementation of MaXsive, a training-free generative image watermarking method for diffusion models.
- 2025/08/12: Initial codebase release with WAVEs verification.
root/
└── MaXsive/
├── data/
│ ├── 0000.pt
│ ├── 0001.pt
│ └── ...
├── positive_image/
│ ├── 0000.jpg
│ ├── 0001.jpg
│ └── ...
└── WAVE_positive_image/
├── 0000/
│ ├── 0000_blurring_0_2.jpg
│ ├── 0000_blurring_0_4.jpg
│ └── ...
└── 0001/
├── 0001_blurring_0_2.jpg
├── 0001_blurring_0_4.jpg
└── ...
- Please use
diffusersversion 0.11.1 for compatibility. - While this repository includes implementations of other watermarking methods, we strongly recommend using their original codebases for best results.
Generate data and positive images:
python image_generate.py --output_path 'root/MaXsive/' --watermark_model 'MaXsive' --model_id 'watermarkSD21'Create WAVEs distortion images from positive images:
python wave_attacks.py 'root/MaXsive/'Evaluate on clean images:
python eva_clean.py --root 'root/MaXsive/' --tpr_file 'threshold/MaXsive-cos.pt' --filename 'clean_result.txt'Evaluate on WAVEs distortions:
python eva_attack.py --root 'root/MaXsive/' --attacked_path 'WAVE_positive_image/' --tpr_file 'threshold/MaXsive-cos.pt' --distortion_list 'attack_config/WAVEs.json' --filename 'MaXsive_WAVEs_result.txt'If you use MaXsive, please cite:
@article{mao2025maxsive,
title={MaXsive: High-Capacity and Robust Training-Free Generative Image Watermarking in Diffusion Models},
author={Mao, Po-Yuan and Tsai, Cheng-Chang and Lu, Chun-Shien},
journal={ACM International Conference on Multimedia},
year={2025}
}