A comprehensive Software Development Life Cycle automation platform using MCP (Model Context Protocol) servers and agentic framework with Gemini 2.5 Pro integration.
- Python 3.11+ - Required for the modular script system
- Conda (Miniconda or Anaconda) - Download here
- Docker (optional) - For database containers
- Git - Version control
# Clone the repository
git clone <repository-url>
cd SuperMon
# Make startup scripts executable
chmod +x start_all.sh supermon.py
# Setup environment and dependencies
./start_all.sh setup
# Start all services
./start_all.sh start
# Check status
./start_all.sh status# Run code quality checks
./start_all.sh quality
# Format code
./start_all.sh format
# Lint code
./start_all.sh lint
# Run tests
./start_all.sh test
# Stop all services
./start_all.sh stop
# Restart all services
./start_all.sh restartThe project now uses a modular Python-based script system for better maintainability:
supermon.py- Main Python script for managing all servicesstart_all.sh- Shell wrapper around the Python scriptscripts/- Directory containing modular components:utils.py- Utility functionsenvironment.py- Environment and dependency managementdatabase.py- Database service managementservices.py- Backend, frontend, and MCP server management
This modular approach makes it easier to maintain and extend the platform.
- Requirements Agent: Analyzes conversations and extracts requirements
- Planning Agent: Creates epics and user stories
- Development Agent: Manages code and deployment
- Testing Agent: Handles testing and quality assurance
- Communication Agent: Manages stakeholder communication
- Slack: Real-time messaging and notifications
- WhatsApp: Mobile communication
- Webex: Video conferencing and meetings
- Notion: Documentation and planning
- GitHub: Repository and issue management
- PostgreSQL: Database management
- Redis: Caching and sessions
- Docker: Containerization
- Tl;dv: Meeting recording and transcription
- Backend: FastAPI + Python 3.11
- Frontend: Next.js 14 + React 18
- Database: PostgreSQL + Redis
- AI: Gemini 2.5 Pro
- Environment: Conda
- Code Quality: Black, isort, ruff, mypy, pre-commit
The platform uses conda for environment management. The environment.yml file defines all dependencies:
name: supermon
channels:
- conda-forge
- defaults
dependencies:
- python=3.11
- pip
- nodejs=18
- postgresql=15
- redis=7
- pip:
- fastapi==0.104.1
- uvicorn==0.24.0
# ... other dependenciesCreate a .env file with your API keys:
# AI Services
GEMINI_API_KEY=your_gemini_api_key_here
OPENAI_API_KEY=your_openai_api_key_here
# Communication Services
SLACK_BOT_TOKEN=your_slack_bot_token_here
WHATSAPP_API_KEY=your_whatsapp_api_key_here
WEBEX_ACCESS_TOKEN=your_webex_token_here
# Project Management
NOTION_API_KEY=your_notion_api_key_here
GITHUB_TOKEN=your_github_token_here
# Database
DATABASE_URL=postgresql://supermon:supermon123@localhost/supermon
REDIS_URL=redis://localhost:6379
# Frontend
NEXT_PUBLIC_API_URL=http://localhost:8000- Analyzes Slack/Webex conversations using Gemini 2.5 Pro
- Extracts functional, non-functional, and technical requirements
- Validates and prioritizes requirements automatically
- Generates comprehensive requirements summaries
- Creates project epics from analyzed requirements
- Generates user stories with acceptance criteria
- Estimates story points and effort using AI
- Maps dependencies automatically
- Automated meeting scheduling with participant coordination
- Integration with Tl;dv for recording and transcription
- AI-powered action item extraction from meeting transcripts
- Automatic follow-up on action items
- Slack: Team collaboration and notifications
- WhatsApp: Stakeholder updates and mobile communication
- Webex: Video conferencing and meeting management
- Email: Formal communications and summaries
- GitHub integration for repository management
- Automatic issue creation and tracking
- CI/CD pipeline integration
- AI-assisted code review and quality checks
- Notion integration for automated documentation
- AI-generated technical specifications
- Automatic API documentation generation
- Centralized knowledge base management
- Requirements Gathering: AI analyzes conversations from Slack/Webex
- UI Enhancement: Additional requirements collected via web interface
- Epic Creation: AI generates project epics and user stories
- Meeting Scheduling: Automated meeting coordination
- Development Tracking: Real-time progress monitoring
- Documentation: Automated Notion documentation
- Communication: Multi-channel stakeholder updates
The platform includes comprehensive code quality tools:
- Black: Code formatting
- isort: Import sorting
- ruff: Fast Python linter
- mypy: Static type checking
- pytest: Testing framework
- pre-commit: Automated quality checks
- ESLint: JavaScript/TypeScript linting
- Prettier: Code formatting
- TypeScript: Static type checking
# Run all quality checks
./start_all.sh quality
# Format code only
./start_all.sh format
# Lint code only
./start_all.sh lint
# Run tests only
./start_all.sh test# Start all services
./start_all.sh start
# Access points
# Frontend: http://localhost:3000
# API Docs: http://localhost:8000/docs
# Health: http://localhost:8000/health# Build and deploy with Docker
docker-compose up -d
# Or deploy to cloud platforms
# - AWS ECS/Fargate
# - Google Cloud Run
# - Azure Container Instances
# - Heroku- Application health endpoints
- Database connection monitoring
- MCP server status tracking
- Agent performance metrics
- Structured logging with JSON format
- Log aggregation and analysis
- Error tracking and alerting
- Performance monitoring
- Project completion rates
- Agent performance metrics
- API response times
- User engagement analytics
- JWT-based authentication
- Role-based access control (RBAC)
- API key management for external services
- Secure token storage
- Encrypted API communications
- Secure database connections
- Environment variable management
- Audit logging
- Rate limiting
- Input validation
- CORS configuration
- Error handling without information leakage
# Clone and setup
git clone <repository-url>
cd SuperMon
# Setup conda environment
conda env create -f environment.yml
conda activate supermon
# Install pre-commit hooks
pre-commit install
# Run quality checks
./start_all.sh quality- Follow PEP 8 for Python code
- Use type hints throughout
- Write comprehensive tests
- Document all public APIs
- Use conventional commits
# Run all tests
pytest
# Run with coverage
pytest --cov=app --cov-report=html
# Run specific test file
pytest tests/test_config.py- Setup Guide:
docs/SETUP.md - Architecture:
docs/ARCHITECTURE.md - API Documentation: http://localhost:8000/docs
- Code Quality: See
.pre-commit-config.yaml
Once running, access the platform at:
- Frontend Dashboard: http://localhost:3000
- API Documentation: http://localhost:8000/docs
- Health Check: http://localhost:8000/health
- Admin Panel: http://localhost:3000/admin
# Recreate environment
conda env remove -n supermon
conda env create -f environment.yml# Check PostgreSQL
docker ps | grep postgres
docker logs supermon-postgres
# Check Redis
docker ps | grep redis
docker logs supermon-redis# Fix formatting
black .
isort .
# Fix linting issues
ruff check --fix .
# Check types
mypy app/- Backend logs:
backend/logs/ - Frontend logs: Browser console
- MCP server logs:
mcp_servers/*/logs/
This project is licensed under the MIT License - see the LICENSE file for details.
- Documentation: Check
/docsdirectory - Issues: Create GitHub issues for bugs
- Discussions: Use GitHub discussions for questions
- Slack: Join our community Slack channel
SuperMon - Streamlining SDLC with AI-powered automation and multi-channel communication.