-
-
Notifications
You must be signed in to change notification settings - Fork 23
Closed
Description
Let's say I fit a linear model with a continuous-by-categorical interaction.
fit <- lm(
formula = Sepal.Width ~ Petal.Length * Species,
data = iris
)I can use estimate_slopes() to see what the slope of the continuous variable is for each level of the categorical variable.
modelbased::estimate_slopes(fit, trend = "Petal.Length", at = "Species")
#> Estimated Marginal Effects
#>
#> Species | Coefficient | SE | 95% CI | t(144) | p
#> -----------------------------------------------------------------
#> setosa | 0.39 | 0.26 | [-0.13, 0.90] | 1.49 | 0.138
#> versicolor | 0.37 | 0.10 | [ 0.18, 0.56] | 3.89 | < .001
#> virginica | 0.23 | 0.08 | [ 0.07, 0.40] | 2.86 | 0.005
#> Marginal effects estimated for Petal.LengthBut I don't think there is currently a way in {modelbased} to contrast those slopes. However, you can do so with emtrends().
emmeans::emtrends(fit, specs = pairwise ~ Species, var = "Petal.Length")
#> $emtrends
#> Species Petal.Length.trend SE df lower.CL upper.CL
#> setosa 0.388 0.2602 144 -0.1264 0.902
#> versicolor 0.374 0.0961 144 0.1843 0.564
#> virginica 0.234 0.0819 144 0.0725 0.396
#>
#> Confidence level used: 0.95
#>
#> $contrasts
#> contrast estimate SE df t.ratio p.value
#> setosa - versicolor 0.0136 0.277 144 0.049 0.9987
#> setosa - virginica 0.1535 0.273 144 0.563 0.8400
#> versicolor - virginica 0.1400 0.126 144 1.108 0.5105
#>
#> P value adjustment: tukey method for comparing a family of 3 estimatesA {modelbased} wrapper for this functionality would be nice, especially if its arguments were more intuitive than emtrend's.
Metadata
Metadata
Assignees
Labels
No labels