v0.7.0
v0.7.0 Bug Fixes Galore
This release introduces numerous bug fixes, including critical ones for push_to_hub, save_pretrained and distillation training.
Bug fixes and improvements
- Add a warning if an unsplit dataset is passed to SetFitTrainer by @jaalu in #299
- Improve dataset pre-processing speeds for large datasets by @logan-markewich in #309
- Add Path support to
_save_pretrained, resolveTypeError: unsupported operand type(s) for +: 'PosixPath' and 'str'by @tomaarsen in #332 - Add Hallmarks of Cancer notebook by @MosheWasserb in #333
- Initialize SetFitModel with
clsinstead by @kobiche in #341 - Allow distillation training with models using differentiable heads by @tomaarsen in #343
- Prevent TypeError on
model.predictwhen using string labels by @tomaarsen in #331 - Restrict
pandasto <2 for compatibility tests by @tomaarsen in #350 - Update
Trainer.push_to_hubto use**kwargsby @tomaarsen in #351 - Add metric keyword arguments, e.g. add "average" strategy to f1 by @tomaarsen in #353
Significant community contributions
The following contributors have made significant changes to the library over the last release:
- @jaalu
- Add a warning if an unsplit dataset is passed to SetFitTrainer (#299)
- @tomaarsen
- Add comparison plotting script (#319)
- Resolve IndexError if there is just one K-shot scenario
- Reintroduce Usage in README until docs are ready
- Add Path support to _save_pretrained (#332)
- Allow distillation training with models using differentiable heads (#343)
- Prevent TypeError on
model.predictwhen using string labels (#331) - Restrict
pandasto <2 for compatibility tests (#350) - Update
Trainer.push_to_hubto use**kwargs(#351) - Add metric keyword arguments, e.g. add "average" strategy to f1 (#353)
- @EdAbati
- @MosheWasserb
- Add Hallmarks of Cancer notebook (#333)