Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions .flake8
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@ select = C,E,F,W,B,T
ignore = E203, E402, W503
per-file-ignores =
*__init__.py:F401
*cli.py:T001
exclude =
venv
examples
1 change: 1 addition & 0 deletions doc/progress.rst
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@ Changelog
* DOC #1051: Document existing extensions to OpenML-Python besides the shipped scikit-learn
extension.
* FIX #1035: Render class attributes and methods again.
* ADD #1049: Add a command line tool for configuration openml-python.
* FIX #1042: Fixes a rare concurrency issue with OpenML-Python and joblib which caused the joblib
worker pool to fail.
* FIX #1053: Fixes a bug which could prevent importing the package in a docker container.
Expand Down
4 changes: 4 additions & 0 deletions doc/usage.rst
Original file line number Diff line number Diff line change
Expand Up @@ -59,6 +59,10 @@ which are separated by newlines. The following keys are defined:
* 1: info output
* 2: debug output

This file is easily configurable by the ``openml`` command line interface.
To see where the file is stored, and what its values are, use `openml configure none`.
Set any field with ``openml configure FIELD`` or even all fields with just ``openml configure``.

~~~~~~~~~~~~
Key concepts
~~~~~~~~~~~~
Expand Down
8 changes: 6 additions & 2 deletions examples/20_basic/introduction_tutorial.py
Original file line number Diff line number Diff line change
Expand Up @@ -42,13 +42,17 @@
# * After logging in, open your account page (avatar on the top right)
# * Open 'Account Settings', then 'API authentication' to find your API key.
#
# There are two ways to authenticate:
# There are two ways to permanently authenticate:
#
# * Use the ``openml`` CLI tool with ``openml configure apikey MYKEY``,
# replacing **MYKEY** with your API key.
# * Create a plain text file **~/.openml/config** with the line
# **'apikey=MYKEY'**, replacing **MYKEY** with your API key. The config
# file must be in the directory ~/.openml/config and exist prior to
# importing the openml module.
# * Run the code below, replacing 'YOURKEY' with your API key.
#
# Alternatively, by running the code below and replacing 'YOURKEY' with your API key,
# you authenticate for the duration of the python process.
#
# .. warning:: This example uploads data. For that reason, this example
# connects to the test server instead. This prevents the live server from
Expand Down
331 changes: 331 additions & 0 deletions openml/cli.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,331 @@
"""" Command Line Interface for `openml` to configure its settings. """

import argparse
import os
import pathlib
import string
from typing import Union, Callable
from urllib.parse import urlparse


from openml import config


def is_hex(string_: str) -> bool:
return all(c in string.hexdigits for c in string_)


def looks_like_url(url: str) -> bool:
# There's no thorough url parser, but we only seem to use netloc.
try:
return bool(urlparse(url).netloc)
except Exception:
return False


def wait_until_valid_input(
prompt: str, check: Callable[[str], str], sanitize: Union[Callable[[str], str], None]
) -> str:
""" Asks `prompt` until an input is received which returns True for `check`.

Parameters
----------
prompt: str
message to display
check: Callable[[str], str]
function to call with the given input, that provides an error message if the input is not
valid otherwise, and False-like otherwise.
sanitize: Callable[[str], str], optional
A function which attempts to sanitize the user input (e.g. auto-complete).

Returns
-------
valid input

"""

while True:
response = input(prompt)
if sanitize:
response = sanitize(response)
error_message = check(response)
if error_message:
print(error_message, end="\n\n")
else:
return response


def print_configuration():
file = config.determine_config_file_path()
header = f"File '{file}' contains (or defaults to):"
print(header)

max_key_length = max(map(len, config.get_config_as_dict()))
for field, value in config.get_config_as_dict().items():
print(f"{field.ljust(max_key_length)}: {value}")


def verbose_set(field, value):
config.set_field_in_config_file(field, value)
print(f"{field} set to '{value}'.")


def configure_apikey(value: str) -> None:
def check_apikey(apikey: str) -> str:
if len(apikey) != 32:
return f"The key should contain 32 characters but contains {len(apikey)}."
if not is_hex(apikey):
return "Some characters are not hexadecimal."
return ""

instructions = (
f"Your current API key is set to: '{config.apikey}'. "
"You can get an API key at https://new.openml.org. "
"You must create an account if you don't have one yet:\n"
" 1. Log in with the account.\n"
" 2. Navigate to the profile page (top right circle > Your Profile). \n"
" 3. Click the API Key button to reach the page with your API key.\n"
"If you have any difficulty following these instructions, let us know on Github."
)

configure_field(
field="apikey",
value=value,
check_with_message=check_apikey,
intro_message=instructions,
input_message="Please enter your API key:",
)


def configure_server(value: str) -> None:
def check_server(server: str) -> str:
is_shorthand = server in ["test", "production"]
if is_shorthand or looks_like_url(server):
return ""
return "Must be 'test', 'production' or a url."

def replace_shorthand(server: str) -> str:
if server == "test":
return "https://test.openml.org/api/v1/xml"
if server == "production":
return "https://www.openml.org/api/v1/xml"
return server

configure_field(
field="server",
value=value,
check_with_message=check_server,
intro_message="Specify which server you wish to connect to.",
input_message="Specify a url or use 'test' or 'production' as a shorthand: ",
sanitize=replace_shorthand,
)


def configure_cachedir(value: str) -> None:
def check_cache_dir(path: str) -> str:
p = pathlib.Path(path)
if p.is_file():
return f"'{path}' is a file, not a directory."
expanded = p.expanduser()
if not expanded.is_absolute():
return f"'{path}' is not absolute (even after expanding '~')."
if not expanded.exists():
try:
os.mkdir(expanded)
except PermissionError:
return f"'{path}' does not exist and there are not enough permissions to create it."
return ""

configure_field(
field="cachedir",
value=value,
check_with_message=check_cache_dir,
intro_message="Configuring the cache directory. It can not be a relative path.",
input_message="Specify the directory to use (or create) as cache directory: ",
)
print("NOTE: Data from your old cache directory is not moved over.")


def configure_connection_n_retries(value: str) -> None:
def valid_connection_retries(n: str) -> str:
if not n.isdigit():
return f"Must be an integer number (smaller than {config.max_retries})."
if int(n) > config.max_retries:
return f"connection_n_retries may not exceed {config.max_retries}."
if int(n) == 0:
return "connection_n_retries must be non-zero."
return ""

configure_field(
field="connection_n_retries",
value=value,
check_with_message=valid_connection_retries,
intro_message="Configuring the number of times to attempt to connect to the OpenML Server",
input_message=f"Enter an integer between 0 and {config.max_retries}: ",
)


def configure_avoid_duplicate_runs(value: str) -> None:
def is_python_bool(bool_: str) -> str:
if bool_ in ["True", "False"]:
return ""
return "Must be 'True' or 'False' (mind the capital)."

def autocomplete_bool(bool_: str) -> str:
if bool_.lower() in ["n", "no", "f", "false", "0"]:
return "False"
if bool_.lower() in ["y", "yes", "t", "true", "1"]:
return "True"
return bool_

intro_message = (
"If set to True, when `run_flow_on_task` or similar methods are called a lookup is "
"performed to see if there already exists such a run on the server. "
"If so, download those results instead. "
"If set to False, runs will always be executed."
)

configure_field(
field="avoid_duplicate_runs",
value=value,
check_with_message=is_python_bool,
intro_message=intro_message,
input_message="Enter 'True' or 'False': ",
sanitize=autocomplete_bool,
)


def configure_verbosity(value: str) -> None:
def is_zero_through_two(verbosity: str) -> str:
if verbosity in ["0", "1", "2"]:
return ""
return "Must be '0', '1' or '2'."

intro_message = (
"Set the verbosity of log messages which should be shown by openml-python."
" 0: normal output (warnings and errors)"
" 1: info output (some high-level progress output)"
" 2: debug output (detailed information (for developers))"
)

configure_field(
field="verbosity",
value=value,
check_with_message=is_zero_through_two,
intro_message=intro_message,
input_message="Enter '0', '1' or '2': ",
)


def configure_field(
field: str,
value: Union[None, str],
check_with_message: Callable[[str], str],
intro_message: str,
input_message: str,
sanitize: Union[Callable[[str], str], None] = None,
) -> None:
""" Configure `field` with `value`. If `value` is None ask the user for input.

`value` and user input are first corrected/auto-completed with `convert_value` if provided,
then validated with `check_with_message` function.
If the user input a wrong value in interactive mode, the user gets to input a new value.
The new valid value is saved in the openml configuration file.
In case an invalid `value` is supplied directly (non-interactive), no changes are made.

Parameters
----------
field: str
Field to set.
value: str, None
Value to field to. If `None` will ask user for input.
check_with_message: Callable[[str], str]
Function which validates `value` or user input, and returns either an error message if it
is invalid, or a False-like value if `value` is valid.
intro_message: str
Message that is printed once if user input is requested (e.g. instructions).
input_message: str
Message that comes with the input prompt.
sanitize: Union[Callable[[str], str], None]
A function to convert user input to 'more acceptable' input, e.g. for auto-complete.
If no correction of user input is possible, return the original value.
If no function is provided, don't attempt to correct/auto-complete input.
"""
if value is not None:
if sanitize:
value = sanitize(value)
malformed_input = check_with_message(value)
if malformed_input:
print(malformed_input)
quit()
else:
print(intro_message)
value = wait_until_valid_input(
prompt=input_message, check=check_with_message, sanitize=sanitize,
)
verbose_set(field, value)


def configure(args: argparse.Namespace):
""" Calls the right submenu(s) to edit `args.field` in the configuration file. """
set_functions = {
"apikey": configure_apikey,
"server": configure_server,
"cachedir": configure_cachedir,
"connection_n_retries": configure_connection_n_retries,
"avoid_duplicate_runs": configure_avoid_duplicate_runs,
"verbosity": configure_verbosity,
}

def not_supported_yet(_):
print(f"Setting '{args.field}' is not supported yet.")

if args.field not in ["all", "none"]:
set_functions.get(args.field, not_supported_yet)(args.value)
else:
if args.value is not None:
print(f"Can not set value ('{args.value}') when field is specified as '{args.field}'.")
quit()
print_configuration()

if args.field == "all":
for set_field_function in set_functions.values():
print() # Visually separating the output by field.
set_field_function(args.value)


def main() -> None:
subroutines = {"configure": configure}

parser = argparse.ArgumentParser()
subparsers = parser.add_subparsers(dest="subroutine")

parser_configure = subparsers.add_parser(
"configure",
description="Set or read variables in your configuration file. For more help also see "
"'https://openml.github.io/openml-python/master/usage.html#configuration'.",
)

configurable_fields = [f for f in config._defaults if f not in ["max_retries"]]

parser_configure.add_argument(
"field",
type=str,
choices=[*configurable_fields, "all", "none"],
default="all",
nargs="?",
help="The field you wish to edit. "
"Choosing 'all' lets you configure all fields one by one. "
"Choosing 'none' will print out the current configuration.",
)

parser_configure.add_argument(
"value", type=str, default=None, nargs="?", help="The value to set the FIELD to.",
)

args = parser.parse_args()
subroutines.get(args.subroutine, lambda _: parser.print_help())(args)


if __name__ == "__main__":
main()
Loading