-
Notifications
You must be signed in to change notification settings - Fork 4.5k
[kimi k2 thinking] Avoid useless torch.zeros_ #13596
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
Show all changes
7 commits
Select commit
Hold shift + click to select a range
953d657
overlap fused marlin moe silu_and_mul and zeros
BBuf 612c276
upd
BBuf 09016fc
upd
BBuf ea47d58
Update python/sglang/srt/layers/moe/fused_moe_triton/fused_marlin_moe.py
BBuf 1fda11d
upd
BBuf f18369b
🤖 Auto-format code with isort, black, ruff, and clang-format
github-actions[bot] 2558292
Merge branch 'main' into overlap_fused_marlin_moe_silu_and_mul_zeros
BBuf File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
239 changes: 239 additions & 0 deletions
239
python/sglang/srt/layers/moe/fused_moe_triton/fused_marlin_moe.py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,239 @@ | ||
| import functools | ||
| from typing import Optional | ||
|
|
||
| import torch | ||
|
|
||
| from sglang.srt.utils import is_cuda | ||
|
|
||
| _is_cuda = is_cuda() | ||
|
|
||
| if _is_cuda: | ||
| from sgl_kernel import silu_and_mul | ||
|
|
||
|
|
||
| def get_scalar_type(num_bits: int, has_zp: bool): | ||
| from sgl_kernel.scalar_type import scalar_types | ||
|
|
||
| if has_zp: | ||
| assert num_bits == 4 | ||
| return scalar_types.uint4 | ||
| else: | ||
| return scalar_types.uint4b8 if num_bits == 4 else scalar_types.uint8b128 | ||
|
|
||
|
|
||
| def fused_marlin_moe( | ||
| hidden_states: torch.Tensor, | ||
| w1: torch.Tensor, | ||
| w2: torch.Tensor, | ||
| w1_scale: torch.Tensor, | ||
| w2_scale: torch.Tensor, | ||
| gating_output: torch.Tensor, | ||
| topk_weights: torch.Tensor, | ||
| topk_ids: torch.Tensor, | ||
| global_num_experts: int = -1, | ||
| expert_map: Optional[torch.Tensor] = None, | ||
| g_idx1: Optional[torch.Tensor] = None, | ||
| g_idx2: Optional[torch.Tensor] = None, | ||
| sort_indices1: Optional[torch.Tensor] = None, | ||
| sort_indices2: Optional[torch.Tensor] = None, | ||
| w1_zeros: Optional[torch.Tensor] = None, | ||
| w2_zeros: Optional[torch.Tensor] = None, | ||
| workspace: Optional[torch.Tensor] = None, | ||
| num_bits: int = 8, | ||
| is_k_full: bool = True, | ||
| inplace: bool = False, | ||
| routed_scaling_factor: float = None, | ||
| ) -> torch.Tensor: | ||
| """ | ||
| This function computes a Mixture of Experts (MoE) layer using two sets of | ||
| weights, w1 and w2, and top-k gating mechanism. | ||
|
|
||
| Parameters: | ||
| - hidden_states (torch.Tensor): The input tensor to the MoE layer. | ||
| - w1 (torch.Tensor): The first set of expert weights. | ||
| - w2 (torch.Tensor): The second set of expert weights. | ||
| - w1_scale (torch.Tensor): Scale to be used for w1. | ||
| - w2_scale (torch.Tensor): Scale to be used for w2. | ||
| - gating_output (torch.Tensor): The output of the gating operation | ||
| (before softmax). | ||
| - g_idx1 (Optional[torch.Tensor]): The first set of act_order indices. | ||
| - g_idx2 (Optional[torch.Tensor]): The second set of act_order indices. | ||
| - sort_indices1 (Optional[torch.Tensor]): The first act_order input | ||
| permutation. | ||
| - sort_indices2 (Optional[torch.Tensor]): The second act_order input | ||
| permutation. | ||
| - topk_weights (torch.Tensor): Top-k weights. | ||
| - topk_ids (torch.Tensor): Indices of topk-k elements. | ||
| - w1_zeros (Optional[torch.Tensor]): Optional zero points to be used for w1. | ||
| - w2_zeros (Optional[torch.Tensor]): Optional zero points to be used for w2. | ||
| - num_bits (int): The number of bits in expert weights quantization. | ||
|
|
||
| Returns: | ||
| - torch.Tensor: The output tensor after applying the MoE layer. | ||
| """ | ||
| from sglang.srt.layers.moe.fused_moe_triton import ( | ||
BBuf marked this conversation as resolved.
Show resolved
Hide resolved
|
||
| moe_align_block_size, | ||
| try_get_optimal_moe_config, | ||
| ) | ||
|
|
||
| assert hidden_states.shape[0] == gating_output.shape[0], "Number of tokens mismatch" | ||
| assert hidden_states.shape[1] == w1.shape[1] * 16, "Hidden size mismatch w1" | ||
| assert hidden_states.shape[1] == w2.shape[2] // ( | ||
| num_bits // 2 | ||
| ), "Hidden size mismatch w2" | ||
| assert hidden_states.is_contiguous(), "Hidden_states must be contiguous" | ||
| assert w1.is_contiguous(), "Expert weights1 must be contiguous" | ||
| assert w2.is_contiguous(), "Expert weights2 must be contiguous" | ||
| assert hidden_states.dtype in [torch.float16, torch.bfloat16] | ||
| assert ( | ||
| hidden_states.dtype == w1_scale.dtype | ||
| ), f"moe_wna16_marlin_gemm assumes hidden_states.dtype ({hidden_states.dtype}) == w1_scale.dtype ({w1_scale.dtype})" | ||
| assert ( | ||
| hidden_states.dtype == w2_scale.dtype | ||
| ), f"moe_wna16_marlin_gemm assumes hidden_states.dtype ({hidden_states.dtype}) == w2_scale.dtype ({w2_scale.dtype})" | ||
| assert num_bits in [4, 8] | ||
|
|
||
| M, K = hidden_states.shape | ||
| E = w1.shape[0] | ||
| N = w2.shape[1] * 16 | ||
| topk = topk_ids.shape[1] | ||
|
|
||
| get_config_func = functools.partial( | ||
| try_get_optimal_moe_config, | ||
| w1.shape, | ||
| w2.shape, | ||
| topk_ids.shape[1], | ||
| None, | ||
| is_marlin=True, | ||
| ) | ||
| config = get_config_func(M) | ||
BBuf marked this conversation as resolved.
Show resolved
Hide resolved
|
||
|
|
||
| block_size_m = config["BLOCK_SIZE_M"] | ||
|
|
||
| if global_num_experts == -1: | ||
| global_num_experts = E | ||
| sorted_token_ids, expert_ids, num_tokens_post_padded = moe_align_block_size( | ||
| topk_ids, block_size_m, global_num_experts | ||
| ) | ||
|
|
||
| if workspace is None: | ||
| max_workspace_size = (max(2 * N, K) // 64) * ( | ||
| sorted_token_ids.size(0) // block_size_m | ||
| ) | ||
| device = hidden_states.device | ||
| sms = torch.cuda.get_device_properties(device).multi_processor_count | ||
| max_workspace_size = min(max_workspace_size, sms * 4) | ||
| workspace = torch.zeros( | ||
| max_workspace_size, dtype=torch.int, device=device, requires_grad=False | ||
| ) | ||
|
|
||
| scalar_type1 = get_scalar_type(num_bits, w1_zeros is not None) | ||
| scalar_type2 = get_scalar_type(num_bits, w2_zeros is not None) | ||
|
|
||
| intermediate_cache2 = torch.empty( | ||
| (M * topk_ids.shape[1], N), | ||
| device=hidden_states.device, | ||
| dtype=hidden_states.dtype, | ||
| ) | ||
| intermediate_cache13 = torch.empty( | ||
| (M * topk_ids.shape[1] * max(2 * N, K),), | ||
| device=hidden_states.device, | ||
| dtype=hidden_states.dtype, | ||
| ) | ||
| intermediate_cache1 = intermediate_cache13[: M * topk_ids.shape[1] * 2 * N] | ||
| intermediate_cache1 = intermediate_cache1.view(-1, 2 * N) | ||
| intermediate_cache3 = intermediate_cache13[: M * topk_ids.shape[1] * K] | ||
| intermediate_cache3 = intermediate_cache3.view(-1, K) | ||
|
|
||
| use_atomic_add = ( | ||
| hidden_states.dtype == torch.half | ||
| or torch.cuda.get_device_capability(hidden_states.device)[0] >= 9 | ||
| ) | ||
|
|
||
| intermediate_cache1 = torch.ops.sgl_kernel.moe_wna16_marlin_gemm.default( | ||
| hidden_states, | ||
| intermediate_cache1, | ||
| w1, | ||
| w1_scale, | ||
| w1_zeros, | ||
| g_idx1, | ||
| sort_indices1, | ||
| workspace, | ||
| sorted_token_ids, | ||
| expert_ids, | ||
| num_tokens_post_padded, | ||
| topk_weights, | ||
| moe_block_size=block_size_m, | ||
| top_k=topk, | ||
| mul_topk_weights=False, | ||
| is_ep=expert_map is not None, | ||
| b_q_type_id=scalar_type1.id, | ||
| size_m=M, | ||
| size_n=2 * N, | ||
| size_k=K, | ||
| is_k_full=is_k_full, | ||
| use_atomic_add=use_atomic_add, | ||
| use_fp32_reduce=True, | ||
| is_zp_float=False, | ||
| ) | ||
|
|
||
| silu_and_mul(intermediate_cache1.view(-1, 2 * N), intermediate_cache2) | ||
|
|
||
| if expert_map is not None: | ||
| intermediate_cache3.zero_() | ||
|
|
||
| intermediate_cache3 = torch.ops.sgl_kernel.moe_wna16_marlin_gemm.default( | ||
| intermediate_cache2, | ||
| intermediate_cache3, | ||
| w2, | ||
| w2_scale, | ||
| w2_zeros, | ||
| g_idx2, | ||
| sort_indices2, | ||
| workspace, | ||
| sorted_token_ids, | ||
| expert_ids, | ||
| num_tokens_post_padded, | ||
| topk_weights, | ||
| moe_block_size=block_size_m, | ||
| top_k=1, | ||
| mul_topk_weights=True, | ||
| is_ep=expert_map is not None, | ||
| b_q_type_id=scalar_type2.id, | ||
| size_m=M * topk, | ||
| size_n=K, | ||
| size_k=N, | ||
| is_k_full=is_k_full, | ||
| use_atomic_add=use_atomic_add, | ||
| use_fp32_reduce=True, | ||
| is_zp_float=False, | ||
| ).view(-1, topk, K) | ||
|
|
||
| output = hidden_states if inplace else torch.empty_like(hidden_states) | ||
| torch.sum(intermediate_cache3.view(*intermediate_cache3.shape), dim=1, out=output) | ||
| if routed_scaling_factor is not None: | ||
| output *= routed_scaling_factor | ||
| return output | ||
|
|
||
|
|
||
| def fused_marlin_moe_fake( | ||
| hidden_states: torch.Tensor, | ||
| w1: torch.Tensor, | ||
| w2: torch.Tensor, | ||
| w1_scale: torch.Tensor, | ||
| w2_scale: torch.Tensor, | ||
| gating_output: torch.Tensor, | ||
| topk_weights: torch.Tensor, | ||
| topk_ids: torch.Tensor, | ||
| g_idx1: Optional[torch.Tensor] = None, | ||
| g_idx2: Optional[torch.Tensor] = None, | ||
| sort_indices1: Optional[torch.Tensor] = None, | ||
| sort_indices2: Optional[torch.Tensor] = None, | ||
| w1_zeros: Optional[torch.Tensor] = None, | ||
| w2_zeros: Optional[torch.Tensor] = None, | ||
| num_bits: int = 8, | ||
| is_k_full: bool = True, | ||
| inplace: bool = False, | ||
| routed_scaling_factor: float = None, | ||
| ) -> torch.Tensor: | ||
| return torch.empty_like(hidden_states) | ||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.