Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
19 changes: 13 additions & 6 deletions models/agg_predictor.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,15 +14,15 @@ def __init__(self, N_word, N_h, N_depth, gpu, use_hs):
self.gpu = gpu
self.use_hs = use_hs

self.q_lstm = nn.LSTM(input_size=N_word, hidden_size=N_h/2,
self.q_lstm = nn.LSTM(input_size=N_word, hidden_size=int(N_h/2),
num_layers=N_depth, batch_first=True,
dropout=0.3, bidirectional=True)

self.hs_lstm = nn.LSTM(input_size=N_word, hidden_size=N_h/2,
self.hs_lstm = nn.LSTM(input_size=N_word, hidden_size=int(N_h/2),
num_layers=N_depth, batch_first=True,
dropout=0.3, bidirectional=True)

self.col_lstm = nn.LSTM(input_size=N_word, hidden_size=N_h/2,
self.col_lstm = nn.LSTM(input_size=N_word, hidden_size=int(N_h/2),
num_layers=N_depth, batch_first=True,
dropout=0.3, bidirectional=True)

Expand All @@ -40,7 +40,7 @@ def __init__(self, N_word, N_h, N_depth, gpu, use_hs):
self.agg_out_c = nn.Linear(N_h, N_h)
self.agg_out = nn.Sequential(nn.Tanh(), nn.Linear(N_h, 5)) #for 1-5 aggregators

self.softmax = nn.Softmax() #dim=1
self.softmax = nn.Softmax(dim=1) #dim=1
self.CE = nn.CrossEntropyLoss()
self.log_softmax = nn.LogSoftmax()
self.mlsml = nn.MultiLabelSoftMarginLoss()
Expand Down Expand Up @@ -113,15 +113,22 @@ def loss(self, score, truth):
#loss for the column number
truth_num = [len(t) for t in truth] # double check truth format and for test cases
data = torch.from_numpy(np.array(truth_num))
truth_num_var = Variable(data.cuda())
data = torch._cast_Long(data)
if self.gpu:
truth_num_var = Variable(data.cuda())
else:
truth_num_var = Variable(data)
loss += self.CE(agg_num_score, truth_num_var)
#loss for the key words
T = len(agg_score[0])
truth_prob = np.zeros((B, T), dtype=np.float32)
for b in range(B):
truth_prob[b][truth[b]] = 1
data = torch.from_numpy(truth_prob)
truth_var = Variable(data.cuda())
if self.gpu:
truth_var = Variable(data.cuda())
else:
truth_var = Variable(data)
#loss += self.mlsml(agg_score, truth_var)
#loss += self.bce_logit(agg_score, truth_var) # double check no sigmoid
pred_prob = self.sigm(agg_score)
Expand Down